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FOREWORD

The OECD’s Working1 Group on Harmonization of Regulatory Oversight in Biotechnology
decided at its first session, in June 1995, to focus its work on the development of Consensus Documents
that are mutually recognised among Member countries. These Consensus Documents contain information
for use during the regulatory assessment of a particular product. In the area of plant biosafety, Consensus
Documents are being developed on the biology of certain plant species, on specific genes and resulting
proteins that, when introduced into a plant, result in the expression of specific traits, and on biosafety
issues arising from certain general trait modifications made to plants.

This document, which was prepared by Germany as lead country, addresses the biology of the
species Triticum aestivum. It has been revised based on comments received from OECD Member
countries and on subsequent comments from National Co-ordinators, following further rounds of review
in 1997 and 1998.

As part of a joint project with the United Nations Environment Programme (UNEP) and the
United Nations Industrial Development Organization (UNIDO) on centres of origin and diversity, the
document was reviewed by experts in several countries that are centres of origin and diversity for wheat.
The Joint Meeting of the Chemicals Committee and the Working Party on Chemicals has recommended
that this document be made available to the public. It is published on the authority of the Secretary-
General of the OECD.

                                                     
1. In August 1998, following a decision by OECD Council to rationalise the names of Committees and

Working Groups across the OECD, the “Expert Group on Harmonization of Regulatory Oversight in
Biotechnology” became the “Working Group”.
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Preamble

OECD Member countries are now commercialising and marketing agricultural and industrial
products of modern biotechnology. They have identified the need for harmonization of regulatory
approaches for the assessment of these products, in order to avoid unnecessary trade barriers.

In 1993, Commercialisation of Agricultural Products Derived through Modern
Biotechnology was instituted as a joint project of the OECD’s Environment Policy Committee and its
Committee on Agriculture. The objective of this project is to assist countries in their regulatory oversight
of agricultural products derived through modern biotechnology – specifically in their efforts to ensure
safety, to make oversight policies more transparent and efficient, and to facilitate trade. The project is
focused on the review of national policies, with respect to regulatory oversight, that will affect the
movement of these products into the marketplace.

The first step of this project was to carry out a survey concentrating on national policies in
regard to regulatory oversight of these products. Data requirements for products produced through modern
biotechnology, and mechanisms for data assessment, were also surveyed. The results were published in
Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results
(OECD, 1995).

Subsequently, an OECD Workshop was held in June 1994 in Washington, D.C. with the aim of
improving awareness and understanding of the various systems of regulatory oversight developed for
agricultural products of biotechnology; identifying similarities and differences in various approaches; and
identifying the most appropriate role for the OECD in further work towards harmonization of these
approaches. Approximately 80 experts in the areas of environmental biosafety, novel food safety and
varietal seed certification, representing 16 OECD countries, eight non-member countries, the European
Commission and several international organisations, participated in the Workshop. Report of the OECD
Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology
was also published by the OECD in 1995.

As a next step towards harmonization, the Working Group on Harmonization of Regulatory
Oversight in Biotechnology instituted the development of Consensus Documents that are mutually
recognised among Member countries. The purpose of these documents is to describe common elements in
the safety assessment of a new plant variety developed through modern biotechnology, to encourage
information sharing and prevent duplication of effort among countries. These common elements fall into
three general categories: the biology of the host plant species, or crop; the introduced genes and gene
products conferring the novel trait; and biosafety issues arising from the introduction of certain general
trait types into plants.

The safety issues identified in the Consensus Documents on the biology of specific crop plants
are intended to address the potential for gene transfer within the crop plant species, and among related
species, as well as the potential for weediness. They make no attempt to be definitive in this respect,
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however, as the many different environments in which the crop species may be grown are not considered
individually.

This Consensus Document is a “snapshot” of current information that may be relevant in a
regulatory risk assessment. It is meant to be useful not only to regulatory officials, as a general guide and
reference source, but also to industry and others carrying out research and product development.

Reference to two other OECD publications that have been published in recent years will also
prove useful. Traditional Crop Breeding Practices: An Historical Review to Serve as a Baseline for
Assessing the Role of Modern Biotechnology presents information concerning 17 different crop plants. It
includes sections on phytosanitary considerations in the movement of germplasm and on current end uses
of the crop plants. There is also a detailed section on current breeding practices. Safety Considerations for
Biotechnology: Scale-Up of Crop Plants provides a background on plant breeding, discusses scale
dependency effects, and identifies various safety issues related to the release of plants with “novel traits”.1

To ensure that scientific and technical developments are taken into account, OECD countries
have agreed that Consensus Documents will be updated regularly. Additional areas relevant to the subject
of each Consensus Document will be considered at the time of updating.

Users are therefore invited to provide relevant new scientific and technical information, and to
make proposals concerning additional areas that might be considered in the future. A short, pre-addressed
questionnaire is included at the end of this document. The information requested should be sent to the
OECD at one of the addresses shown.

                                                     
1. For more information on these and other OECD publications, contact the OECD Publications Service, 2 rue

André-Pascal, 75775 Paris Cedex 16, France. Fax: (33) 01.49.10.42.76; E-mail: PUBSINQ@oecd.org; or
consult http://www.oecd.org
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Section I - General Description and Use as a Crop,
Including Taxonomy and Morphology

Triticum aestivum, bread wheat, belongs to the order Poales (Glumiflorae), family Poaceae
(Gramineae), tribe Triticeae, genus Triticum. The tribe Triticeae consists of 18 genera which are divided
into two sub-groups, the Triticinae and the Hordeinae. The major genera in the sub-group Triticinae are
Triticum, Aegilops, Secale, Agropyron and Haynaldia (Odenbach 1985, Zeller 1985, Körber-Grohne
1988).

Plants of the genus Triticum are annuals with spring or winter forms. They show the following
morphological features: short ligule and spikelets that are sometimes hairy, and a smooth, bald, usually
hollow culm, 0.7-1.6 metre in height. Pithy filling is less common than a hollow culm. The ears have a
brittle or tough rachis. Generally they are four-sided. The spikelets have two to five florets. Each floret
can produce one grain (caryopsis), i.e. is distichous. The glumes are keeled, on the upper side for example
in T. aestivum, with serrated lemmas, long and either bearded or unbearded. Grains are loosely enclosed
(naked wheat) and easily threshed. The rachilla has thin walls and does not disarticulate on maturity. In
case of T. aestivum ssp. spelta (spelt wheat) the grains are hulled by the spelta. For this reason they cannot
be dropped during the process of threshing (Garcke 1972, Geisler 1991).

T. aestivum is a cereal of temperate climates. The northern limit of wheat cultivation in Europe
lies in southern Scotland (60° latitude) and occasionally beyond (central Scandinavia up to 64°). In North
America wheat is grown to about 55° latitude. Wheat occurrence follows a similar pattern in the southern
hemisphere. In the Alps, it is grown to an altitude of 1 500 metres above sea level (Körber-Grohne 1988,
Geisler 1991).

The minimum temperature for germination of T. aestivum seeds is between 3 and 4°C.
Flowering begins above 14°C. The vegetative period is 120 to 145 days for spring wheat and 280 to 350
days for winter wheat. Some varieties of T. aestivum need long photoperiods; some, especially those
cultivated in southern Europe, are insensitive to day length. The harvested fruit, a grain with the botanical
name caryopsis, contains approximately 80 to 84 per cent endosperm, approximately 60 per cent
carbohydrate (starch), approximately 10 to 16 per cent protein, approximately 2 per cent fat, and
approximately 13 per cent water (Hömmö and Pulli 1993). The starch granules of the Triticeae are
botanically distinctive. Wheat meal is an important product. Meal from T. durum (macaroni wheat), for
example, is used for the production of pastas such as spaghetti and semolina. Meal from T. aestivum
(bread wheat) on the other hand contains a high proportion of gluten. For this reason it is very suitable for
baking. Spelt wheat is rich in protein. Overlapping in protein content and high starch content can occur, as
there is a wide range of difference due to both genetic variation and variable environmental conditions
(Körber-Grohne 1988).
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Section II - Agronomic Practices

In the Northern Hemisphere, depending on the location and the preceding crop, winter wheat can
be sown from late August to late December. Sowing usually occurs between mid-September and late
October. Seeds of winter wheat need 40 to 70 days vernalisation with a temperature between -1°C and
+8°C (Geisler 1970, 1971, Kübler 1994). Hömmö and Pulli (1993) reported a maximum cold tolerance for
winter wheat of about -25°C.

Seeds of spring wheat need only 3 to 5 days (Geisler 1970) or 0 to 14 days (Reiner et al. 1992)
vernalisation. The commencement of growth of shoots is decisively influenced by the photoperiod in the
case of spring wheat. The cold tolerance for seedlings of spring wheat is about -5°C (Hömmö and Pulli
1993). The sowing season for spring wheat is from January to May (Kübler 1994).

In normal agricultural practice T. aestivum is used in a crop rotation schedule. Sugar beet, grain
legumes and corn (Zea mays) or fodder maize make good preceding crops (Kübler 1994). Oilseed rape
and winter barley occupy large areas and are part of many crop rotation systems that include winter wheat.
Wheat/fallow rotations are commonly used in the western Great Plains region of the United States.
Problems with plant diseases (see Annex I) may arise from the frequent use of wheat as part of the crop
rotation system.

As with all crops cultivated and harvested at the field scale, some seeds may escape and remain
in the soil until the following season when they germinate either before or following seeding of the
succeeding crop. In some instances these “volunteers” may give considerable competition to the seeded
crop and warrant chemical and/or mechanical control. The problem of volunteer plants in succeeding
crops is common to most field crop species. Much depends on the management practices used in the
production of the crop, e.g. the speed of the harvesting operation which will determine whether more or
less seed is lost by the harvester. A suitable soil treatment after the harvest can considerably reduce the
volunteer problem.

A great number of dicotyledonous and fewer monocotyledonous weeds have been reported to
occur in fields used for wheat production. Seeds of some of these, when harvested and mixed with the
wheat grain, can reduce flour quality (Wolff 1987).

Isolation of wheat plants for seed multiplication within the context of plant breeding can be done
with greaseproof paper or cellophane bags placed over the heads (Mandy 1970, Saatgutverordnung/BGbl
1986). Without these, modest spatial isolation may be required to prevent outcrossing. In Germany, for
example, there is no minimum isolation distance for wheat breeding, but there is a requirement for
separation from all neighbouring plants that can be threshed, and for a buffer zone of a minimum of 40 cm
to prevent mechanical mixing of the seeds (Saatgutverordnung 1986).
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Section III - Centres of Origin/Diversity, Geographic Distribution

History of Wheat

The oldest archaeological findings of naked wheat (6800 to 5200 B.C.) come from southern
Turkey, Israel, Syria, Iraq, Iran and south of the Caucasus Mountains in Georgia. At that time, einkorn,
emmer and barley were the staple cereal crops in Asia Minor. Wheat was only grown on a regional basis.
There is evidence that naked wheat was cultivated in the southern Caucasus in neolithic settlements
between the late fifth and early fourth millennium B.C. Late Bronze Age specimens (approximately 1000
to 900 B.C.) of naked wheat have been found at several sites in the Crimea, which was an early and
significant wheat-growing area. Archaeological findings of wheat in Israel date from the same period
(Körber-Grohne 1988).

In Central Europe, the oldest dated findings of wheat grains (a mixture of T. aestivum,
T. dicoccon and T. monococcum) were in soil samples from the New Stone Age (4600 to 3800 B.C.).
When the late neolithic period began, naked wheat was gaining importance as a crop in some areas along
the River Neckar and around riverside and moorland settlements in the northern foothills of the Alps. It
was not until the Roman Empire that wheat spread to the lower Rhine regions, the lower Meuse and the
Scheldt Estuary, where it became the main cereal crop. Further south, spelt was favoured. Wheat farming
declined north of the Alps between the fall of Rome and the Middle Ages. Evidence from excavated sites
shows that little wheat was grown in the period 800 to 1200 (Körber-Grohne 1988).

The origin of Wheat has been well known since the 1940s, mainly through the work of E. R.
Sears at the University of Missouri, Columbia (USA) from 1939 to 1980 (MacFadden and Sears 1946).
The evolution of wheat began with an unknown diploid prototype, from which the genera Triticum and
Aegilops were formed by diploid divergence. The development of the genus Triticum (see Figure 1) began
with the einkorn lineage (T. monococcum line, genome AA), which developed into the cultured form
T. monococcum from the wild form T. boeoticum. Allopolyploidization with an Ae. speltoides descendant
(genome BB) led to the tetraploid emmer lineage (T. turgidum line, genome AABB) with the wild form
T. dicoccoides from which the cultured form T. dicoccon developed. The origin of the B-genome is more
uncertain; Ae. speltoides, Ae. longissimum, Ae. bicornis, Ae. searsii, Ae. sharonense are suggested as
possible progenitors. The spelt lineage1 with the genome AABBDD resulted from further
allopolyploidization with the species Ae. squarrosa (= Ae. tauschii; genome DD) (Körber-Grohne 1988,
Sitte et al. 1991, Zeller and Friebe 1991). For the current classification of the genus Triticum see the
monograph of van Slageren (1994), also available on the home page of the Wheat Genetics Research
Center, Kansas State University (http://www.ksu.edu/wgrc, under “Triticum” accessions). More recent
references in regard to the issue of wheat origin are Cauderon (1994), Zohary and Hopf (1994) and
Feldman et al. (1995).

                                                     
1. Note that the term “lineage” is used to indicate that descendants are related.
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Figure 1  An overview of the diploid einkorn lineage
(Körber-Grohne 1988, Sitte et al. 1991, Zeller and Friebe 1991)
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A. Origin of einkorn lineage

The einkorn lineage includes the wild species of T. boeoticum and various goat grasses (see
Table 1). The latter were formerly considered to belong to the genus Aegilops, but many geneticists now
classify them as belonging to the genus Triticum. The only domesticated species in this group is einkorn
(T. monococcum). Species have only one grain per floret; however, they may have one or two florets per
spikelet. They are diploid (2n = 14, genome AA) (Körber-Grohne 1988, Sitte et al. 1991, Zeller and Friebe
1991).

Table 1  Geographic distribution of the diploid einkorn lineage
(Körber-Grohne 1988)

Hulled grain
Wild einkorn
T. boeoticum (AA)
Single-grain var. aegliopoides (AA)
Balkans, N. Greece, W. Turkey
Double-grain var. thaoudar (AA)
E. Turkey, N. Iraq, Iran
Progeny of the two varieties (AA)
Central Turkey, Transcaucasia
Goat grass T. tauschii (Aegilops tauschii =
 Aegilops squarrosa) (DD)
Mediterranean, Central Asia, Iran, Iraq,
Transcaucasia
Another five species of Aegilops
(similar to B)
Asia Minor and Central Asia
Einkorn T. monococcum (AA)

B. Origin of emmer lineage

The emmer lineage includes only tetraploid hybrids with the genome AABB (see Table 2). The
cultivated form T. dicoccon developed from the wild form T. dicoccoides. Three forms of wild emmer are
found today in various parts of Asia Minor and Central Asia. Of the six domesticated species, only emmer
retains its hull as a mature grain. Species have two to three florets with two grains each (Körber-Grohne
1988, Sitte et al. 1991, Zeller and Friebe 1991).
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Table 2  Geographic distribution of the tetraploid emmer lineage
(Körber-Grohne 1988)

Hulled grain Naked grain

Wild emmer T. dicoccoides (AABB)
S.E. Turkey, Israel, S. Syria, N. Iraq,
W. Iran
Wild emmer T. timopheevi (AAGG)
Transcaucasia, Armenia, N. Iraq, W. Iran
Wild emmer T. araraticum (AAGG)
Transcaucasia
Emmer T. dicoccon (AABB) Durum wheat T. durum (AABB)

N.E. Africa, Mediterranean, Spain
Rivet/cone wheat T. turgidum (AABB)
Portugal, UK, Spain
Persian wheat T. carthlicum (AABB)
Caucasia, Iraq, Iran
Oriental wheat T. turanicum (AABB)
Polish wheat T. polonicum (AABB)
S. Europe, Turkey, Iraq, Iran, Armenia,
N.W. India

C. Origin of spelt lineage

It is assumed that genome A derives from einkorn (T. monococcum) and genome D from goat
grass (T. tauschii = Ae. squarrosa = Ae. tauschii). The origin of the third genome (B) is still unclear. It
possibly belongs to Ae. speltoides descendants or ancestors (see Section II: History of Wheat).

The hexaploid wheat group (2n = 42, genome AABBDD) is closely related to spelt, macha and
the naked wheats (see Table 3). The genetic differences in the gene pool of hexaploid wheat are small,
although they exert a considerable influence, yielding both hulled grain (e.g. spelt) and naked grain
(wheat).

The entire hexaploid lineage (AABBDD) is regarded as a single species. The various grains (e.g.
bread wheat T. aestivum ssp. vulgare, spelt Triticum aestivum ssp. spelta) are considered as subspecies. In
practical usage, however, the earlier categories are still frequently applied (Körber-Grohne 1988).
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Table 3  Geographic distribution of the hexaploid spelt lineage
(Körber-Grohne 1988)

Hulled grain Naked grain

Macha wheat T. macha (AABBDD)
Georgia/Transcaucasia
T. vavilovii (AABBDD)
Armenia
Spelt/dinkel T. spelta (AABBDD) Dwarf/club wheat T. compactum (AABBDD)

mountains of Afghanistan, Alps
Cake wheat (Kugelweizen) T. sphaerococcum
(AABBDD)
Afghanistan, Bukhara, N.W. India
Bread wheat T. aestivum (aestivum) (AABBDD)
Temperate zones
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Section IV - Reproductive Biology

Reproduction of T. aestivum is only known in the context of cultivation (Garke 1972).
Harvesting and propagation of its seed are entirely dependent on man. Wheat is predominantly self-
pollinating. The cross-fertilisation rate may be as high as 1 to 2 per cent, although it can be less than 1 per
cent (Poehlmann 1959). Wind-borne cross-fertilisation depends heavily on physical factors. It is minimal
(0.1 per cent) where there is high humidity, but higher when there is warm, dry weather. Under such
conditions, it has been claimed that the cross-fertilisation rate may be between 3.7 and 9.7 per cent. Cross-
fertilisation is considerably more likely in the ears of stem branches (also called tillers) (Mandy 1970).
The rate of cross-fertilisation may also depend on the variety (e.g. Stoner 24 to 37 per cent). Hucl (1996)
shows for 10 Canadian spring wheat cultivars that the cross-pollination frequency varies according to the
genotype. The frequency was always lower than 9 per cent. Apomixis is very rare (Mandy 1970).

Wheat’s flowering season depends on geographical location. For example, in Germany and
Sweden it flowers from late May to late June (Mandy 1970, Garke 1972). Flowering times for
Mediterranean Europe and the centres of origin and diversity of wheat are late winter, and early spring
(Galun, personal communication). Sunny weather and temperatures of at least 11 to 13°C are propitious
for flowering (Mandy 1970). The influorescence of wheat is a spike, and the ear on the main culm flowers
first. The process begins in the middle third of the ear, spreading towards the tip and base. The spikelets at
the top and bottom of the ear are the last to bloom (Mandy 1970). In cultivated wheat fields, the number of
ears is usually between 400 and 650/m². Depending on the proportion of well-developed ears, the average
grain count per ear varies between 35 to 40 and 20 to 25. However, the standard number of seeds per head
is 30 to 35 (one ear carrying an average of 80 florets) (Kübler 1994; average data in Germany).

When flowering, the lemmas and palaeas open to an angle of 20 to 35°. The pollen sacs appear
about four to six minutes later adopting a horizontal position. Under favourable weather conditions a
floret will complete the flowering cycle in 13 to 18 minutes. The reproductive organs are slightly
protandrous (pollen sacs mature one to three days earlier). An unfertilised spikelet remains open for
several hours or even days (Mandy 1970).

Flowering for a full ear takes between 101 and 120 hours, 23 florets a day blooming on average.
Blooming begins in the early morning between 4 and 5 a.m. Peak flowering time is between 9 and
10 a.m., with a second peak between 2:30 and 3:30 p.m. By 7 p.m. flowering is usually completed. A
wheat plant flowers for four to 15 days (Mandy 1970; average data in Germany).

The quantity of pollen produced by an anther is low, being approximately 2700 pollen grains per
sac. It has been established that, on average, 80 per cent of pollen from an anther which protrudes from the
spikelet is dispersed into the air. It was assumed from this that a wheat variety with a large number of
protruding anthers would make enough pollen available to achieve cross-fertilisation. Under experimental
conditions in the laboratory (moderate mass exchange of 10 g/cm per second and moderate wind speed of
3 m/sec), pollen travels about 60 m distance at a height of 1 m (D’Souza 1970). In field experiments
Wilson (1968) found 10 per cent seedsetting on male sterile wheat plants that were 30 m from the pollen
donor plants.
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Pollen begins to germinate 15 minutes after deposition on the stigma (D’Souza 1970) and retains
its fertilisation ability for only a very short period. Even under optimum conditions of 5°C and 60 per cent
relative atmospheric humidity, this period will not exceed three hours. Under common field conditions of
20°C and 60 per cent relative atmospheric humidity it may remain viable for less than 30 minutes. With
temperatures of about 30°C and low relative atmospheric humidity, the pollen is only able to achieve its
function for 15 minutes. On hot days, therefore, this short fertilisation period can considerably reduce
pollen germination in the event that cross-pollination does occur (D’Souza 1970).
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Section V - Cross-fertilisation

A. Interspecific/genus

 Selection breeding, which had been ongoing for centuries, and the more recent methods of
classical hybridisation breeding, have led to an enormous improvement of bread wheat traits.
Biotechnological methods offer the potential to complement these traditional techniques. It has been 20
years since in vitro methods were first used in wheat breeding (Picard and de Buyser 1973). At that time
the first variety, “Jinghua”, which was produced using anther culture techniques, was licensed in China. In
1985, “Florin” became the first variety developed using in vitro methodology to be licensed in Europe
(France) (de Buyser et al. 1987, Henry and de Buyser 1990).

There are many examples of successful classical cross-breeding within the genome lineage of
T. aestivum, and between T. aestivum and the other lineages described above (see Figure 1). Hybridisation
is possible with any combination in the hexaploid lineage. The progeny are fertile because the genomes
are homologous. Heterosis frequently occurs.

In general, T. aestivum has been used as the mother plant in inter-generic and inter-specific
crossing. Many crosses have been successful, although techniques such as embryo rescue may be required
to obtain viable progeny. Differences have been noted in the receptivity of different varieties of
T. aestivum to accept cross-fertilisation by other species such as rye (Zeven 1987). One of the reasons for
this is the potential control (or lack thereof) by genes Kr1 and Kr2 (Gale and Miller 1987). Wheat has
been the subject of considerable work involving wide crossing, but much of this will have little relevance
to crosses that might occur naturally in the environment.

Crosses such as (diploid x hexaploid, tetraploid x hexaploid) reduce the fertility of the F1

generation substantially. Hybridisation is more successful if the parent with higher chromosome number is
used as mother plant, although it should be noted that hybridisation between wheat x barley is efficient
when barley (14 chromosomes) is used as the female parent. Most F1 hybrids from hexaploid x diploid
crosses are sterile. Only manual crossing of T. aestivum x T. monococcum produced F1 hybrids with grains
that germinated. Grains of the reciprocal hybrid did not germinate. When tetraploids were manually
crossed with hexaploids, only the crossing of T. aestivum with T. turgidum, T. durum, T. timopheevi or
T. carthlicum was successful (Mandy 1970, Sharma and Gill 1983). Hybrids from T. aestivum and
T. turgidum are fertile. So while wheat may be crossed with many related species and some related genera,
F1 plants are often highly sterile, or the embryos abort. Gene transfer occurs only through man’s
intervention, e.g. hand pollination, and through rescue of F1 embryos or through the use of male-sterile
female plants. The chance of gene transfer occurring through such hybrids in nature is minimal. For
production of genetically modified T. aestivum, and information about technical barriers that were
overcome in achieving wheat transformation, see Appendix II.

Triticum species can be crossed by hand with the genera Aegilops, Secale, Agropyron,
Haynaldia Hordeum and Elymus (see Table 4). Trigeneric hybrids are formed in some cases (see Table 5).
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Cross-breeding with Elymus species has proved least successful (Poehlmann 1959, Sharma and Gill 1983,
Zeller 1985, Maan 1987, Jiang et al. 1994). Natural wild crosses of T. aestivum with the following
members of the genera Aegilops (Ae. cylindrica, Ae. triticoides, Ae. neglecta, Ae. triuncalis,
Ae. ventricosa, Ae. genicularia, Ae. bluncalis, Ae. crassa, Ae. juvenalis, Ae. speltoides, Ae. tauschii and
Ae. umbellata) have been reported (van Slagern 1994). Crosses of T. aestivum to tetraploid Aegilops
species resulted in hybrid seeds from which addition, substitution and translocation lines with introgressed
genes for disease resistance have been selected  (Spetsov et al. 1997, Petrova and Spetsov 1997). For
information about cross-breeding of wheat with Elymus, see Dewey (1984), Plourde et al. (1989) and
Koebner et al. (1995); with Thynopyrum, see Dewey (1984) and Sharma and Baezinger (1986); with
Elytrigia, see Dewey (1984) and Cauderon (1994); and with Pseudoroegnaria, see Dewey (1984). Wheat
can also cross with Sorghum and Setaria (Laurie et al. 1990).

Most manual cross-breeding has been carried out with Secale cereale, in order to combine the
high grain yield and protein quality of wheat with rye’s disease resistance and tolerance of poor soil
conditions. The resulting generic progeny is called “triticale.” There are only a few reports on natural
hybridisation between wheat and rye. Müntzing (1979) reports a massive natural hybridisation in 1918,
resulting in up to 20 per cent male sterile F1 wheat x rye hybrids within wheat plots isolated by
surrounding rows of rye plants. This spontaneous hybridisation occurred with wheat cultivars exhibiting
anemophilic flower characters under dry continental conditions. In most cases, the F1 hybrids are
completely male sterile and have to be pollinated by wheat, rye or fertile tricicale to obtain generic
progenies. Another possibility to overcome pollen sterility of wheat x rye hybrids is to double their
chromosome number. Modern triticale breeding based on recombination among hexaploid triticales has
solved the most important problems with the crop, namely low fertility, poor grain filling, tall stem and
late ripening (Wolski et al. 1996). Triticale can be exploited as a bridge for the introgression of valuable
genes from Secale cereale, e.g. by the generation of 1B/1R translocation chromosomes. The first
European cultivar of triticale was obtained in France [Clerical since 1982 and on open catalogues since
1983 (Bernard and Guedes Pinto 1980, Cauderon and Bernard 1980)].

Through the use of in vitro methods, dihaploid plants have been produced from crosses between
wheat and Hordeum bulbosum (Blanco et al. 1986, Cauderon and Cauderon 1956, Stich and Snape 1987)
and wheat and Zea mays (Kisana et al. 1993). In these cases, the barley and maize chromosomes are
eliminated in early stages of embryo development (Barcley 1975, Laurie and Bennett 1988, 1989). After
diploidisation of the resulting haploid plants, the homozygous wheat material can be used for RFLP
analysis, gene localisation and isolation.

Mandy (1970) reported the first manual intergeneric hybrid between ((Triticum vulgare x
Haynaldia villosa) x Secale cereale), with the chromosome number (n = 35). Reciprocal hybridisation has
had low success.

Interspecific hybridisation under natural conditions has been reported to occur only rarely
(Gotsov and Panayotov 1972).



ENV/JM/MONO(99)8

22

Table 4  Manual intergeneric crossing with Aegilops (Ae.), Secale (S.), Agropyron (A.),
Haynaldia (Ha.), Hordeum (H.) and Elymus (E.)

(Sharma and Gill 1983)

Wheat parent Species of allied genera crossed

Diploid wheat: Ae. bicornis, Ae. caudata, Ae. columnaris, Ae. comosa, Ae. cylindrica,
Triticum monococcum Ae. longissima, Ae. mutica, Ae. ovata, Ae. speltoides, Ae. squarrosa,

Ae. triaristata,  Ae. tripsaccoides, Ae. triuncialis, Ae. umbellulata,
Ae. uniaristata, Ae. variabilis, Ae. ventricosa
S. cereale
A. elongatum, A. intermedium
Ha. villosa
H. vulgare

Tetraploid wheat: Ae. bicornis, Ae. biuncialis, Ae. caudata, Ae. clylindrica, Ae. columnaris,
T. turgidum, includes Ae. comosa, Ae. crassa, Ae. dichasians, Ae. heldreichii, Ae. kotschyi,
durum, carthlicum, Ae. longissima, Ae. mutica, Ae. ovata, Ae. sharonensis, Ae. speltoides,
dicoccum and dicoccoides Ae. squarrosa, Ae. triaristata, Ae. tripsaccoides, Ae. triunciales,

Ae. umbellulata, Ae. uniaristata, Ae. variabilis, Ae. ventricosa
S. africanum, S. ancestrale, S. cereale, S. montanum, S. vavilovii
A. campestre, A. dasystachyum, A. distichum, A. elongatum,
A. intermedium, A. junceum 4x, A. obtusiusculum, A. repens 
Ha. hordeace, Ha. villosa
H. brevisubulatum, H. chilense, H. vulgare
E. arenarius, E. giganteus

Tetraploid wheat: Ae. bicornis, Ae. caudata, Ae. comosa, Ae. cylindrica, Ae. dichasians,
T. timopheevi Ae. kotschyi, Ae. longissima, Ae. mutica, Ae. ovata, Ae. speltoides,

Ae. squarrosa, Ae. triuncialis, Ae. umbellulata, Ae. uniaristata,
Ae. ventricosa
S. africanum, S. cereale, S. vavilovii
A. campestre, A. cristatum, A. elongatum, A. intermedium, A. junceum 4x,
A. repens
Ha. villosa
H. bogdanii, H. vulgare, H. vulgare ssp. distichon

Hexaploid wheat: Ae. bicornis, Ae. biuncialis, Ae. caudata, Ae. columnaris, Ae. comosa,
T. aestivum Ae. crassa, Ae. cylindrica, Ae. dichasians, Ae. juvenalis, Ae. kotschyi,

Ae. longissima, Ae. mutica, Ae. ovata, Ae. sharonensis, Ae. speltoides,
Ae. squarrosa, Ae. triaristata, Ae. tripsaccoides, Ae. truncialis,
Ae. umbellulata, Ae. uniaristata, Ae. variabilis, Ae. ventricosa
S. africanum, S. ancestrale, S. cereale, S. montanum, S. vavilovii
A. caespitosum, A. distichum, A. elongatum, A. intermedium,
A. junceum 2x, A. podperae, A. scirpeum, A. smithi, A. trachycaulum,
A. yezoense
Ha. villosa
H. chilense, H. pusillum, H. spontaneum, H. vulgare, H. vulgare var. 
distichum
E. giganteus
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Table 5  Trigeneric hybrids from manual crossing Triticum (T.), Aegilops (Ae.),
Hordeum (H.), Agropyron (A.), Haynaldia (Ha.) and Secale (S.)

(Sharma and Gill 1983)

Trigeneric hybrid Reference

(T. timopheevi x H. bogdanii) x S. cereale Kimber & Sallee 1979

(H. vulgare x T. aestivum) x S. cereale Claus 1980; Fedak & Armstrong 1980

(H. vulgare x T. aestivum) x S. montanum Claus 1980

(H. vulgare x A. elongatum) x Ae. crassa Pedigree of Sando’s collection,
USDA, Beltsville

(T. aestivum x S. cereale) x T. aestivum x A. elongatum USDA, Beltsville

Triticale (6x) x (T. durum x A. intermedium) amphidiploid Nowacki et al. 1979

(Ae. ventricosa x S. cereale) x T. aestivum Dosba & Jahier 1981

(Ae. crassa x T. persicum) x S. cereale Knobloch 1968

(Ae. ventricosa x T. dicoccum) x A. intermedium Knobloch 1968

(Ae. ventricosa x T. turgidum) x S. cereale Knobloch 1968

(Ae. ventricosa x T. dicoccum) x S. cereale Siddiqui 1972

(T. aestivum x Ha. villosa) x S. cereale Knobloch 1968

(T. dicoccum x Ha. hordeacea) x S. cereale Knobloch 1968

(T. dicoccum x S. montanum) x Ha. villosa Knobloch 1968

(T. turgidum x Ha. villosa) x S. cereale Knobloch 1968
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B. Introgression

Interspecific hybridisation under natural conditions has rarely occurred (Gotsov and Panayotov
1972), and the role of environmental conditions must be taken into consideration. For example, weather
abnormalities may in some instances contribute to male sterility or in others to overlapping of flowering
periods. Both of these factors can result in the breaking down of effective isolation barriers between
species. The introgression of a new gene will also be dependent on whether or not that gene confers an
ecological advantage on the recipient in specific environments. Even so, data on potential hybridisation
events are helpful in assessing the potential for introgression of “novel traits” of transgenic T. aestivum
into wild relatives. If potential “mates” of T. aestivum are occurring in the geographic region of interest,
introgression has to be taken into consideration.

Rimpau reported observing volunteer crosses between T. aestivum x S. cereale in his wheat
nursery at the beginning of this century. He called the bastard plants “mule-wheat” because they were
infertile and he was not able to collect seed from them. Nevertheless, he continued to make artificial
crosses (von Broock, personal communication).

Intra- and interspecific variation exists within the cytoplasms of wheat and related species, and
this is important for wheat breeders. Cytoplasmic male sterility (CMS) systems are used successfully in
several crops. CMS has been introduced into common wheat through interspecific and intergeneric
hybridisation. Today, chloroplasts and mitochondria are subjects of molecular genetic studies and of
genetic manipulation, and these techniques may in the future be used in wheat. All genetic information
present in the DNA of cytoplasmic organelles is maternally inherited, and therefore the chance for gene
transfer in nature is less than for nucleic genes.

C. Interactions with other organisms

Wheat grain yield is decreased by some 50 major diseases which can produce overall crop
damage (including storage damage) of 20 per cent (Spaar et al. 1989). Fungal diseases are the greatest
problem. Animals, e.g. pigeons, crows and pheasants, feed on seeds, dig and tear out plants, or otherwise
damage them. Mice, rabbits and deer can also cause considerable damage to wheat plants.

The tables in Appendix I are intended as an identification guide for categories of organisms that
interact with T. aestivum. Clearly the organisms listed are examples, with their occurrence depending
upon the geographic region where T. aestivum is grown.
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Section VI - Weed Characteristics/Weediness

Wheat is a crop plant species with low competitive ability. It has no natural habitat outside
cultivation (Garcke 1972, Tutin et al. 1980). Wheat does not have high potential for weediness (Keeler
1989). Wheat plants may sometimes be found in “disturbed” areas where there is little or no competition
from other “weed” species (e.g. waste places, fallow fields, along roadsides), but their survival at such
sites is limited to short periods (Janssen et al. 1995). There are no indications that wheat can become
established as a self-sustaining population on a long-term basis (Sukopp and Sukopp 1993, Newman
1990).
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Appendix I

Most Common Diseases and Pests in Triticum aestivum

Potential interactions of T. aestivum with other life forms during its life cycle (Wiese 1987, Spaar et al.
1989, Wolff and Richter 1989, Chelkowski 1991, Cook and Veseth 1991, Wolff 1992):

Viruses, Mycoplasms

See Brunt et al. 1996. For more information, also see the VIDE database: 
http:\\www.csu.edu.au/viruses/virus.html

Disease Agent
Agropyron mosaic virus Agropyron mosaic virus (AgMV), geographic

occurrence e.g. in Eurasia, Canada and the
USA

Barley stripe mosaic hordeivirus Barley stripe mosaic hordeivirus (BSMV),
geographic occurrence e.g. in
Eurasia, Northern America, Pacific

Barley yellow dwarf virus Barley yellow dwarf virus (BYDV),
geographic occurrence world-wide; wheat
 varieties show different tolerance level
(Baltenberger et al. 1987); tolerance level
had been increased through cross
breeding with resistant Agropyron varieties
(Ohm et al. 1989, Gonlart et al. 1993)

Barley yellow streak mosaic virus Barley yellow streak mosaic virus,
geographic occurrence e.g. in Canada
and USA

Barley yellow striate mosaic
cytorhabdovirus

Barley yellow striate mosaic
cytorhabdovirus (BYSMV), geographic
occurrence e.g. in Africa, Eurasia,
Middle East and Pacific

Brome mosaic virus Brome mosaic virus (BMV), geographic
occurrence e.g. in Eurasia, Australia,
South Africa and USA

European striped wheat mosaic Probably mycoplasms
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Disease Agent
Wheat American striate mosaic
nucleorhabdovirus

Wheat American striate mosaic
nucleorhabdovirus (WASMV),
geographic occurrence e.g. in Canada
and USA

Wheat dwarf virus Wheat dwarf virus (WDV), geographic
occurrence e.g. in Bulgaria, former
Czechoslovakia, Hungary, former USSR,
France and Sweden

Wheat European striate mosaic
tenuivirus

Wheat European striate mosaic tenuivirus
(EWSMV), geographic occurrence e.g. in
Czech Republic, Poland, Romania,
Denmark, Finland, Sweden, Germany, UK
and Spain

Wheat soilborne mosaic virus Wheat soilborne mosaic virus, geographic
occurrence e.g. in China, Japan, Italy and
USA

Wheat spindle streak mosaic virus Wheat spindle streak mosaic virus,
(WSSMV), geographic occurrence e.g. in
France, Germany, Italy, India, Japan,
China, and USA

Wheat spindle streak virus Wheat spindle streak virus
Wheat streak mosaic virus Wheat streak mosaic virus (WSMV),

geographic occurrence e.g. in Canada,
USA, Romania and Jordan

Wheat striate mosaic virus Wheat striate mosaic virus
Wheat yellow leaf virus Wheat yellow leaf virus (WYLV),

geographic occurrence e.g. in Japan and
Italy

Wheat yellow mosaic brymovirus Wheat yellow mosaic brymovirus,
geographic occurrence e.g. in China,
Japan, Korea, Canada and France

Wheat yellow mosaic virus
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Bacteria

Disease Agent
Basal glume blotch Pseudomonas syringae pv. atrofaciens

(McCulloch)
Black glume Xanthomonas campestris pv. translucens

(Jones, Johnson et Reddy) dye
Various known forms which differ only
in host specificity: undulosa, cerealis,
hordei, secalis, orycicola and
phleipratensis
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Fungi

Disease Agent
Ergot Claviceps purpurea: infects florets and

produces grain-like sclerotia containing
mycotoxins (ergot alkaloids).

The fungal grains are harvested with the wheat
grains and, if not removed, mycotoxin
contamination of products occurs.

Eyespot, stembreak, straw breaker Pseudocerosporella herpotrichoides (Fron.)
Deight., Syn.: Cerosporella herpotrichoides
(Fron.), breeding for resistance; wheat
genotypes with short shoot and good
steadiness

Fusarium diseases of shoots (root and
culm rots, partial head blight)

Numerous Fusarium species play a part in
the pathology of the cereal fusaria. The
major species are:
– Fusarium nivale (Ces., Syn.: Gerlachia
nivalis)
– Fusarium culmorum (W.G. Smith) Sacc.
var. culmorum
– Fusarium avenaceum (Fr.) Sacc. var.
avenaceum
– Fusarium graminearum Schwabe
(perfect form: Gibberella zeae (Schw.)
Petch): widespread, especially harmful not
only to wheat but also to maize
– Fusarium poae (Peck) Wollenw.: occurs
sporadically, often in conjunction with the
grass mite (Siteroptes graminum
[Reuter]), which feeds on the fungus and
helps it to proliferate.
– Other species found in wheat include:
Fusarium acuminatum Ell. et Kellerm.
(Gibberella acuminata Wollenw.),
Fusarium dimerum Penzig, Fusarium
equiseti (Corda) Sacc. (Gibberella
intricans Wollenw.), Fusarium porotrichoides
Sherb., Fusarium tricinctum (Corda)
Sacc. and Fusarium moniliforme Sheldon
sensu Wollenw. et Reinking, increased
resistance breeding in wheat; chemical
treatment led to unsatisfactory results
(Maurin et al. 1996).
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Disease Agent
Glume blotch (Septoria disease) Leptosphaeria nodorum (E. Müll.), conidial

form Septoria nodorum Berk., Syn.:
Phaesopheria nodorum (E. Müll.)
Hejarude, only partial resistance in wheat
found (Jeger et al. 1983, Bostwick et al. 1993).

Helminthosporium yellow blotch
disease

Drechslera tritici-repentis (Died.) Shoem.,
perfect form: Pyrenophora trichostoma
(Fr.) Fckl., Syn.: Pyrenophora tritici-repentis
(Died.) Drechsl.

Mould Aspergillus ssp./Penicillium ssp. can
proliferate during storage. Both are potential
mycotoxin producers (Ochratoxin A).

Phoma leaf spot Phoma glomerata (Cda.) Wr. et Hochaf.
Pointed eyespot (stembreak, straw
breaker)

Rhizoctonia spp., Thanatephorus cucumeris
(Frank) Donk.

Powdery mildew of cereals Erysiphe graminis DC. f. sp. tritici March,
resistance genes, e.g. Mlk, Pm1 to Pm9,
M1Ax, U1 and U2, can be found in different
wheat varieties and related species (Heun and
Fischbeck 1987, 1989, Hovmoller 1989,
Zeller et al. 1993).

Rusts

Yellow/stripe rust

Leaf rust of wheat

Black stem rust of wheat

Puccinia striiformis (West., Syn.: Puccinia
glumarum Erikss. et Henn).
Formation of pathotypes which specialise in
wheat or barley. In exceptional cases wheat
stem rust strains may attack highly
susceptible barley varieties or vice versa.
Puccinia recondita Rob. ex Desm. f. sp.
tritici, Syn.: Puccinia triticina Erikss.,
Syn.: Puccinia rubigovera Wint.
Formation of pathotypes, alternate host
Thalictrum spp.
Puccinia graminis Pers. f. sp. tritici
Development of formae speciales specialised
in rye, barley, oats, wheat and grasses.
Numerous pathotypes formed.

Septoria leaf blotch Mycosphaerella graminicola (Fckl.)
Sanderson, conidial form: Septoria tritici
Rob. ex Desm.
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Disease Agent
Smuts

Loose smut of wheat
Covered smut of wheat

Dwarf bunt of wheat
Carnal smut
Stripe/flag smut

Ustilago tritici (Pers.) Rostr.
Various Tilletia species with different sori,
including:
– Tilletia caries (DC.) Tul. Syn.: Tilletia
tritici (Bjerk.) Wint.
– Tilletia foetida (Wallr.) Liro, Syn.: Tilletia
laevis Kühn or Tilletia foetens (Bjerk. et
Curt.) Schroet.
– Tilletia intermedia (Gassner) Savul. Syn.:
Tilletia tritici f. sp. intermedia Gassner
Tilletia controversa Kühn
Neovossia indica (Mit.) Mund.
Urocystis agropyri (Preuss.) Schroet.

Take-all Gaeumannomyces graminis (Sacc.) v. Arx. et
Olivier var. tritici Walker
Several varieties with overlapping hosts,
var. tritici attacks wheat, triticale, barley and
rye, no resistant varieties in wheat found.
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Animals

Pest Agent
Apart from the above-mentioned
species of aphid, the following species
may cause damage to cereals, maize
and grasses:

Bromegrass aphid (Diuraphis
bromicola [H.R.L.]), cat’s-tail aphid
(Diuraphis mühlei [Börn.]), corn leaf
aphid (Rhopalosiphum maidis
[Fitch.]), yellow cherry/reed canary
grass aphid (Rhopalomyzus lonicerae
[Siebold], Rhopalomyzus poae [Gill.],
cocksfoot aphid (Hyalopteroides
humilis [Walk.], Laingia psammae
(Theob.), Schizaphis nigerrima H.R.L.,
Metopolophium festucae (Theob.),
green grain aphid (Schizaphis
graminum [Rond.]), grain aphid
(Sitobion granarium [Kirby]), cob
aphid (Sipha maydis [Pass.], Sipha
glyeriae [Kalt.]), black (bean) aphid
(Aphis fabae Scop.), green peach aphid
Myzus persicae [Sulz.])

Aphids:

Grain aphids

Oat or bird cherry aphid

Aphids arrive from early May (when
wheat is shooting), settling first on leaf
blades and sheaths, transferring to
influorescence as ears extend.
Warm and dry conditions encourage
generations. The generation cycle lasts
8 to 10 days. Each aphid can lay 30 to
50 larva (parthenogenesis). Around
mid-July mass proliferation is briefly
interrupted due to poor feeding
conditions and the appearance of
parasites and predators (ladybirds/ladybugs).
The grain aphid undergoes a holocycle, i.e.
sexual differentiation takes place in
autumn, and winter eggs are laid on
grasses. More than 10 generations
occur in the space of a year.
Macrosiphum avenae (Fabr.), Syn.:
Sitobion avenae (Fabr.)
Also in barley, oats, rye, maize, fodder grasses
Aphid species which does not alternate hosts
Rhopalosiphum padi (L.)
Alternate-host aphid with broad host
plant profile among cereal and grass
species, e.g. barley, oats, maize, fodder
grasses.
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Rose grain aphid Metopolophium dirhodum (Walk.)
Alternate-host aphid (also in barley,
oats, rye, maize, fodder grasses).

Cereal cyst nematodes, cereal stem
eelworm

Heterodera avenae Woll.
Also attacks barley, oats, rye, fodder
grasses.
Several biotypes distinguished by their
host profile.
Cysts drop from roots and survive in
soil. Larvae hatch in spring and infect
roots. Sexual differentiation occurs in
the root. Females carry up to 600 eggs.
When a female dies, its body turns
brown and is transformed into a lemon-shaped
cyst, only limited resistance (Cre 1 gene on
chromosome No. 2B) found in wheat
(Slootmaker et al. 1974).

Cereal leaf beetle Red-throated cereal leaf beetle (Oulema
melanopus [L.], Syn.: Lema melanopa
[L.]), blue cereal leaf beetle (Oulema
lichenis [Voet], Syn.: Lema lichenis
[Voet])
Beetles leave winter quarters in mid-April
and migrate into cereal fields.
Eggs are laid in late May on upper side
of leaves. This takes 6 to 8 weeks.
Each female lays 50 to 100 eggs. Egg
development lasts 7 to 14 days.

Corn beetle Zabrus tenebroides Goeze (corn
ground beetle)
Beetles appear in late June to early
July. Eggs are laid in August and
September. Each female lays 80 to 100
eggs in the soil. The first larvae hatch
after 14 days and undergo three stages.
Overwintering is in the 1st or 2nd larval
stage. At soil temperatures of -1°C in
spring they resume feeding. The bulk of
damage now occurs. Soil pupation
takes place in May. The generation
cycle of the corn ground beetle lasts
one year.
Also found in barley, oats, rye, maize,
fodder grasses.
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Crane-fly larvae Larvae of the marsh crane-fly (Pales
(Tipula) paludosa Meig.), common
crane-fly (Pales (Tipula) oleracea L.),
autumn crane-fly (Pales (Tipula)
czizeki de Jong). Biggest factor: Pales
paludosa.
Also in barley, oats, rye, maize, fodder
grasses.

March fly larvae Bibio hortulans (L.), Bibio marci (L.),
Bibio johannis (L.), Bibio clavipes
(Meig.)
Also in barley, oats, rye, maize, fodder
grasses.

Myriapods Various species of myriapods, notably
the common millipedes Cylindroiulus
teutonicus (Pocock) and Blaniulus
guttulatus (Bosc.)
Also in barley, oats, rye, maize, fodder
grasses.

Root aphids Anoecia corni (Fabr.), Anoecia vagans
(Koch), Aploneura graminis (Buckt.),
Aploneura lentisci Pass., Byrsocrypta
personata Börner, Forda marginata
Koch, Forda formicaria V. Heyden,
Geoica discreta Börner, Tetraneura
ulmi (L.)
Also in barley, oats, rye, maize, fodder
grasses

Slugs Various species of slug, notably the
field slug (Deroceras reticulatum O.F.
Müll., Deroceras agreste L.), the
garden/blackfield slug (Arion hortensis
[Fér.], Arion rufus [L.]).
Also in barley, oats, rye, maize, fodder
grasses.

Wheat and grass bugs Wheat and grass bugs are a non-homogeneous
group of pests. The greatest economic damage
is caused by wheat bugs (Eurygaster spp.).
Also in barley, oats, rye, maize, fodder
grasses.

Wheat nematodes Anguina tritici (Steinbuch) Filipjev
The larvae which live in the galls can be
preserved for years in dried state.

NOTE: A complete list of US wheat pests can be found on the American Phytopathology Society
home page: http://www.scisoc.og/resource/common
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Appendix II

Transformation of Triticum aestivum

The genetic improvement of cereals, including wheat, has been a major focus of plant breeding
efforts during the past 50 years.  It has resulted in remarkable increases in yield as well as improvements
in quality.  Nonetheless, plant breeding is a slow process and has biological limitations.  In this context the
rapidly emerging technologies of plant cell and molecular biology, by permitting access to a much wider
gene pool, have attracted much attention, for they provide powerful and novel tools to supplement and
complement the traditional methods of plant breeding.

Modern plant biotechnology is based on the delivery, integration and expression of defined
foreign genes into plant cells which can then be grown in vitro to regenerate plants. The efficient
regeneration of normal fertile plants from protoplasts is a basic prerequisite for this technology. For
gramineous species, the in vitro regeneration of fertile phenotypically normal plants has been very
difficult (Vasil and Vasil 1992).  The greatest problem to overcome was that of culturing immature and
undifferentiated tissue and organ explants at defined development stages in special nutrient media.  Now
all important cereals, e.g. wheat, barley, rice, can be regenerated from cultured tissue as well as single
cells (Vasil 1994). Most early attempts to transform cereals were limited to the use of totipotent
embryogenic protoplasts, but embryogenic protoplast cultures are difficult to establish and maintain.  For
wheat, in vitro regeneration from immature embryos from young influorescences and microspores
(somatic and gametic embryogenesis) has been possible for some time.  However, to provide the cells with
the greatest access to the transgenes, and in order to obtain cell culture homogeneity, it seems necessary to
achieve genetic transformation of cereals using isolated single cells.  In this way, it has been thought that
the occurrence of chimaeric transformants would also be avoided.  This strategy has been successful with
many plant species (both dicots and monocots such as rice and maize).  Today, normal and fertile plants
can be regenerated from all major species of cereals, including wheat (Vasil et al. 1990).  However, it is
still an inefficient, time-consuming procedure (Vasil and Vasil 1992).

There are different methods of delivering foreign genes into plants (see review: Nehra et al.
1995).  The well known, and often preferred method of Agrobacterium-mediated transformation does not
work very well with cereals.  Like most monocotyledonous species, wheat is generally considered to be
outside the natural host range of the Agrobacterium pathogen.  Experiments with wheat and maize have
shown that Agrobacterium can transfer viral genomic sequences to cereal cells, resulting in a systemic
viral infection called “agroinfection” (Smith and Hood 1995).  For this to occur, it is not necessary to
achieve integration of the viral genes into the plant genome.  Thus it seems that the main difficulty is not
the delivery of DNA, but rather its integration (Grimsley et al. 1987, Dale et al. 1989).  Recent data from
experiments with rice (Hiei et al. 1994), maize (Ishida et al. 1996), barley (Tingay et al. 1997) and also
wheat (Chen et al. 1996) showed efficient transformation mediated by Agrobacterium, with stable
integration, expression and inheritance of the transgenes (Chen et al. 1997).
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Two methods, involving osmotic (polyethylene glycol treatment) or electric (electroporation)
shock, have been used for transformation and have resulted in transient as well as stable expression of the
introduced gene (review: Lörz et al. 1985), e.g. of maize (Fromm et al. 1986).  For wheat transformation
the biolistic method was used (Vasil et al. 1992, Weeks et al. 1993, Becker et al. 1994, Nehra et al. 1994).
This procedure is based on the high-velocity bombardment of plant cells with DNA-coated
microprojectiles, accelerated by gunpowder discharge or pressurised helium gas (Sanford et al. 1991,
Klein et al. 1992).  The main advantage of this method is its ability to deliver DNA into intact regenerable
(via the formation of somatic embryos) plant cells, eliminating the need for protoplasts, which thus
minimises the potential for tissue culture effects and the resulting abnormalities (Vasil et al. 1993, Vasil
1994).

Optimum expression of genes in the target cell is important for achieving a high frequency of
stable transformation.  In wheat, considerable efforts have been made in developing suitable gene
expression vectors for transformation (Nehra et al. 1995).  The inclusion of an intron between the
promoter and the coding region proved useful to achieve enhanced transient gene expression in wheat
(Chibbar et al. 1991).  Furthermore, the isolation of monocot gene promoters, such as the rice actin (Act1)
promoter (McElroy et al. 1991) or the maize ubiquitin (Ubi1) promoter (Christensen et al. 1992)
sometimes resulted in higher expression frequency.  Transgenic wheat has been produced using both
promoters (Weeks et al. 1993, Nehra et al. 1994).

To obtain transgenic plants from the few stably transformed cells achieved through these
transformation techniques, a suitable selection system is required.  Selectable marker genes that confer
resistance to antibiotics or herbicides are usually used.  Among the various antibiotic resistance marker
genes in use, the kanamycin resistance gene has proven ineffective for selection of transformed wheat
cells because these cells and the wheat tissue itself both have a high level of endogenous tolerance to
kanamycin.  Another problem is that using this antibiotic as the selection agent interferes with plant
regeneration (Hauptmann et al. 1988, Peng et al. 1992).  Geneticin (G 418), however, another member of
the aminoglycosides, can be effectively used (Nehra et al. 1994).  Hygromycin was used by Hauptmann
et al. (1988) with a positive result, but experiments conducted by Nehra et al. (1995) were not successful.
As an alternative to antibiotic resistance marker genes, genes conferring resistance to herbicides such as
glufosinate ammonium (l-phosphinothricin) can be used (Nehra et al. 1995).  Detailed descriptions of the
available monocot selection marker systems were presented in the following reviews: Wilmink and Dons
1993, McElroy and Brettell 1994.

In recent years there have been releases of transgenic wheat plants (see Table II-1).  For more
information about this topic in Europe, see RKI, the SNIF database (http://www.rki.de) and the list of
“SNIF circulated under article 9 of Directive 90/220/EEC XI/559/94-Rev 6”.   For the United States, the
reviews of James and Krattinger 1996 and de Kathen 1996, and the APHIS ISB environmental release
database (http://www.aphis.usda.gov/bbep/bp) provide similar information. The OECD BioTrack
database includes information on experimental releases to the environment of genetically modified plants
and microorganisms (http://www.olis.oecd.org/biotrack.nsf).

Future advances in the molecular improvement of wheat, as in that of other plants, will depend
upon the limited availability of agronomically important genes more than on any other factor.  Attention is
being directed to the development of DNA-based maps of wheat for identifying, and then characterising
and cloning, genes of importance and interest.  Gill et al. (1991), for example, provided a standard
karyotype and nomenclature system for describing chromosome bands in bread wheat, while Hohmann
et al. (1994) prepared a genetic/physical map of group 7 chromosomes.  Devos and Gale (1992) tested the
use of random amplified polymorphic DNA (RAPD) markers.  They were unsuccessful because of the
non-homologous, non-dose responsive and dominant behaviour of RAPD products. Vaccino and
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Metakovsky (1995) used RFLP patterns of wheat gliadin alleles as markers, and Devos et al. (1995) used
microsatellite sequences.  Genetic maps, gene markers and QTL are now becoming available or are being
developed.  This work started in 1985 at the Plant Breeding Institute and the John Innes Centre in the UK,
at universities in the United States, and at the INRA in France (Nelson et al. 1995a, 1995b, Cadalent et al.
1996).

Molecular improvement of wheat for multigenic traits, such as yield, will be a difficult and
lengthy process (Vasil 1994).  However, the conservation of gene order along chromosomes, as well as the
similarity of gene composition and map collinearity in cereals, should be a great advantage in regard to the
identification and cloning of important genes (Bennetzen and Freeling 1993, Kurata et al. 1994).

Table II-1  Deliberate releases of transgenic wheat

Country First release Main trait

UK 1994 marker
UK 1994 herbicide resistance (glufosinate)
UK 1995 herbicide resistance (glufosinate)
UK 1995 improved starch quality
UK 1996 pest resistance (tolerance to leaf fungal

disease)
Spain 1996 herbicide resistance (glufosinate), improved

starch quality
UK 1997 alteration in baking quality
Belgium 1997 male sterility/restorer

Argentina 1993 improved quality, male sterility, marker
Argentina 1995 herbicide resistance
Chile 1995 herbicide resistance
USA 1994 herbicide resistance
USA 1994 herbicide resistance (glufosinate)
USA 1994 herbicide resistance (glyphosate)
USA 1995 fungal resistance
USA 1995 herbicide resistance
USA 1995 virus resistance
USA 1995 improved quality
USA 1996 fungal resistance
USA 1996 improved quality
USA 1996 fungal resistance
USA 1996 fungal resistance (glyphosate)
USA 1996 improved quality
USA 1996 herbicide resistance
USA 1996 virus resistance (glyphosate)
USA 1996 herbicide resistance
USA 1996 fungal resistance (glyphosate)
USA 1996 fungal resistance
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